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This is a handout discussing basic results on cardinality, most of which I don’t have time
to prove or discuss in class. It covers a bit more than Chapter 2.5 of the textbook. Most of
the material here is taken from Munkres’s Topology, Sections 1.6 and 1.7.

Please send any questions/comments/corrections to hhao@berkeley.edu.

1 Finite Sets

Definition 1.1. If n ∈ N, then we denote [n] to be the subset {1, 2, . . . , n} of N. If n = 0,
then [0] is defined to be the empty set.

Of course, we have a very good mental picture of what it means for a set to be finite: it
means that we can count the elements in that set, starting at 1 and ending at some positive
integer n. This is imprecise (because we have not formalized what it means to “count”), but
it can easily be made precise: to “count” is to give a bijection between our set and the set
of integers from 1 through n. Therefore:

Definition 1.2. A set S is finite if there is a bijection f : S → [n] for some n ∈ N∪ {0}. If
n = 0, then S has cardinality 0, and if n ≥ 1, S has cardinality n. We often write |S| = n
or #S = n to denote this.

When a set is finite, the words “cardinality” and “size” are often interchanged.

Example 1.1. The set S = {a, b, c} has cardinality 3, because there is a bijection f : S →
[n]: f sends a to 1, b to 2, and c to 3.

Example 1.2. Suppose A is finite and there is a bijection f : A→ B. Then B is also finite.

From the above, it is not immediately clear that the cardinality of a finite set is uniquely
determined (and we cannot yet say “the cardinality of a finite set,” as “the” implies unique-
ness). That is, suppose S is a finite set with cardinality n, so that there is a bijection between
S and [n]. This does not yet preclude the possibility that there is a bijection between S and
[m] for some m 6= n, which would imply S has size n and size m at the same time. Even
though this is intuitively impossible, it must be proved and is not something we can take
for granted. Unfortunately, the proof is somewhat annoying and requires the use of the
“well-ordering property” of the natural numbers N (which is a property equivalent to the
induction axiom). Therefore we only state the technical lemmas, and do not prove them.

First, an exercise involving the special case of the empty set:

Exercise 1.1. The only finite set with cardinality 0 is the empty set. In particular, the
cardinality of the empty set is uniquely determined (the empty set has cardinality 0 and
does not have cardinality n for any n ≥ 1).

hhao@berkeley.edu
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Proposition 1.1. Let n be a positive integer, A be a nonempty set, and a an element of A.
Let n ≥ 0 be an integer. Then there is a bijection f : A → [n + 1] if and only if there is a
bijection g : A− {a} → [n].

Proposition 1.2. Let A be a nonempty set, and assume there is a bijection f : A→ [n] for
some n ∈ N. Let B be a proper subset of A. Then there is no bijection g : B → [n], and if
B is nonempty, there does exist a bijection h : B → [m] for some 1 ≤ m < n.

Proposition 1.1 can be thought of some sort of “induction tool” for finite cardinalities.
It is used to prove Proposition 1.2, which leads to a number of useful consequences. For
instance, if A is finite and B is a subset of A, then B is finite.

Corollary 1.1. If A is a finite set, then there is no bijection of A with a proper subset of
itself.

Proof. The empty set has no proper subsets, so the corollary is vacuously true in that case.
So now assume A is nonempty with B a proper subset of A. Suppose for contradiction that
there is a bijection f : A → B, with inverse bijection f−1 : B → A. Since A is finite, there
is a bijection g : A→ [n] for some n ∈ N, in which case g ◦ f−1 is a bijection from B to [n].
This contradicts Proposition 1.2.

Exercise 1.2. Prove that N is not finite (this “obvious” fact cannot be immediately deduced
from the definitions!).

And here is the promised fact:

Corollary 1.2. Let A be a finite set. Then A has a uniquely determined cardinality. In
particular, it makes sense to say the cardinality of a finite set A.

Proof. From Exercise 1.1, we may assume that A is nonempty. So suppose for contradiction
that A is nonempty, and there are distinct positive integers m,n such that A has cardinality m
and A has cardinality n. Without loss of generality, m < n, so m+1 ≤ n and m+1 ∈ [n]−[m].
Then by definition, there are bijections f : A → [n] and g : A → [m], so the composition
f ◦ g−1 : [m]→ [n] is also a bijection. Since [m] is a subset of [n] (the latter contains m + 1
but the former does not), this contradicts Corollary 1.1.

In particular, if B is a proper subset of a finite set A, then the (uniquely determined)
cardinality of B is strictly less than the cardinality of A, by the last part of Proposition 1.2.

Corollary 1.3. Let A and B be finite sets of the same cardinality, and let f : A→ B be a
function. Then the following are equivalent:

(1) f is injective.



Math 55
Cardinality Handout

Page: 3

(2) f is surjective.

(3) f is bijective.

Proof. The case where A and B both have cardinality 0 (so are empty, by Exercise 1.1) is
left to the reader. So suppose A and B have a common cardinality n ≥ 1.

(3) implies (1) and (2) by definition. We now show (1) implies (3). Let f : A → B be
an injective function. We need to show that f is also surjective. Suppose for contradiction
that it is not, so f(A) is a proper subset of B. Then we induce a bijection f ′ : A → f(A).
Then given a bijection g : A→ [n], we see that g ◦ (f ′)−1 : f(A)→ [n] is a bijection between
a proper subset of B with [n]. This contradicts Proposition 1.2. Hence (1) implies (3).

To show (2) implies (3), we use a result from HW2 that a surjective function f : A→ B
is right-invertible, i.e. there exists h : B → A such that f ◦h = idB. Then h is left-invertible,
so injective (again see HW2), hence bijective by what we just showed. So f = f ◦ h ◦ h−1 =
idB ◦ h−1 = h−1, so f is the inverse bijection to h. Hence (2) implies (3).

There are a host of other results one could prove about finite sets using the above proposi-
tions. As many of them require the well-ordering axiom of the integers or a similar inductive
proof, we won’t provide the proofs, but rather just one more convenient fact and corollary:

Proposition 1.3. If A is a nonempty set, then the following are equivalent:

(1) A is finite.

(2) There exists n ∈ N such that there is a surjection f : [n]→ A.

(3) There exists m ∈ N such that there is an injection g : A→ [m].

Corollary 1.4. If A1, . . . , An are finite sets, then
⋃n

i=1 Ai is finite. Moreover,
∏n

i=1Ai =
A1 × A2 × . . .× An is also finite, with cardinality

∏n
i=1|Ai|.

Proof. We first show the statement about unions when n = 2. If A1 or A2 is empty, then the
union A1 ∪ A2 is either A2 or A1, so the result is trivial. Otherwise, neither A1 nor A2 are
empty, so choose bijections f : [m] → A1 and g : [n] → A2 for some positive integers m,n.
Define h : [m + n]→ A1 ∪ A2 as follows:

h(i) =

{
f(i) 1 ≤ i ≤ m

g(i−m) m + 1 ≤ i ≤ m + n
.

Then h is surjective (why?), so by Proposition 1.3, A1 ∪ A2 is finite.
This argument shows that A1 ∪ A2 is finite. Running the same argument shows that

A1∪A2∪A3 = (A1∪A2)∪A3 is finite (the union of the two finite sets A1∪A2 and A3), and
so on. So by repeating the same proof (this is an intuitive form of an induction argument),
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we conclude that
⋃n

i=1Ai is finite. In particular, any finite union of finite sets is finite, since
the indexing set I over which the union is taken has a bijection with some [n].

Next, we prove the statement about the Cartesian product, again starting in the case
n = 2. Again we may assume A1 and A2 are nonempty. Then given a1 ∈ A1, there is a
bijection between {a1} × A2 and A2, given by (a1, a2) 7→ a2. Hence {a1} × A2 is finite for
any a1 ∈ A1. Now,

A1 × A2 =
⋃

ai∈A1

{a1} × A2,

and the right-hand side is a finite union (with finite indexing set A1) of finite sets. By what
we proved above, A1×A2 is finite. Then the same induction argument as before shows that∏n

i=1Ai is finite for any n ∈ N.
The last statement about cardinality is left as an exercise.

2 Infinite Sets

Definition 2.1. A set that is not finite is called infinite.

Definition 2.2. If A is an infinite set, and if there is a bijection f : A→ N, then A is called
countably infinite. A countable set is any finite or countably infinite set. Otherwise, A is
uncountably infinite or uncountable.

The intuition for a countably infinite set is that the bijection from A to N allows us to
“place the elements of A in order and count them.”

As an example, N is countable. What is less obvious is that the following sets are
countable, because they both seem to differ from N by “infinitely many elements”:

Example 2.1. The set S of even integers is countable. This is because the map f : N→ S,
f(n) = 2n is a bijection.

Example 2.2. The set Z of all integers is countable. We define a function f : Z → N as
follows:

f(0) = 0, f(1) = 1, f(−1) = 2, f(2) = 3, f(−2) = 4, . . . .

One can express this function in closed form as

f(n) =

{
2n− 1 n > 0

−2n n ≤ 0
.

We leave it to the reader to check that f is bijective.
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Perhaps even more surprising is that Q is countable. Here is a “proof without words:”

Unfortunately, this picture, while very helpful for intuition, does not give a precise proof.
We will give such a proof below after some preliminary facts. Again, these will be stated
without proof, since the proofs are quite tedious and involve notions about well-ordering and
recursion that we have not yet discussed.

Lemma 2.1. An infinite subset of N is countably infinite.

Proposition 2.1. If A is a nonempty set, then the following are equivalent:

(1) A is countable (possibly finite).

(2) There exists a surjection f : N→ A.

(3) There exists an injection g : A→ N.

Compare this result with Proposition 1.3.
All the hard work is pushed into this proposition, and so we are free to derive many

useful consequences:

Corollary 2.1. A subset of a countable set is countable.

The intuition is that countable sets are “small”, so a subset of a small set is still small.



Math 55
Cardinality Handout

Page: 6

Proof. If B is a subset of countable A, then by Proposition 2.1, there is an injection g : A→
N. Then the restriction g|B : B → N is injective, so B is countable.

Corollary 2.2. The set N×N is countable.

Proof. By Proposition 2.1, we just need to give an injection f : N×N→ N. Consider the
map given by f(a, b) = 2a3b. One can use the fundamental theorem of arithmetic to prove
that this is injective, but this is not necessary. Indeed, assume 2a3b = 2c3d. Then if a 6= c,
then WLOG a > c, so 2a−c3b = 3d. The left-hand side is even (as a− c > 0), but the right-
hand side is odd, which is absurd. Therefore a = c, and we have 2a3b = 2a3d ⇒ 3b = 3d.
Then if b 6= d, then WLOG b > d, so 3b−d = 1. The left-hand side is divisible by 3 (as
b− d > 0), but the right-hand side is not, contradiction. Therefore b = d, so (a, c) = (b, d),
which shows that f is injective.

As promised, we can now prove that Q is countable.

Example 2.3. The set of rationals Q is countable. One method of proof is given by the
image on the previous page. The idea is to define a bijection from N to Q by “counting via
diagonals,” but this idea takes a bit of work to make rigorous. The main roadblock is that
we need to “recursively” define our function (i.e. f(n + 1) is defined in terms of f(n)), and
making this precise is quite painful. But armed with our current machinery, we can give a
much better proof. Indeed, since N×N is countable, and there is a bijection f : N→ Z, we
can give a bijection N×N→ Z×Z by (a, b) 7→ (f(a), f(b)). Therefore Z×Z is countable.
Then there is a surjection g : Z× Z→ Q given by

g(a, b) =

{
a
b

b 6= 0

0 b = 0
.

By Proposition 2.1, there is a surjection h : N → Z. Then the composition g ◦ h : N → Q
is a surjection, so Q is countable.

The intuition for this argument is that “rationals are represented by some ordered pair
of integers”. Since the set of such ordered pairs is countable, then Q should be as well.

These next two propositions allow us to create new countable sets from known ones.

Proposition 2.2. Let I be a countable index set, and let {Ai}i∈I be a countable collection
of sets indexed by the i ∈ I. Suppose all the Ai are countable. Then

⋃
i∈I Ai is countable (a

countable union of countable sets is countable).

The intuition should be that the proof goes along the same lines as the above proof that
Q is countable (after unraveling said proof to see what is really going on). Indeed, one could
express Q as a countable union of subsets Qn, where Qn is the set of rationals that can be
expressed as a fraction of integers with numerator n.
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Proof. Each Ai is countable, so for each i, choose a surjection fi : N → Ai. Similarly, the
index set I is countable, so choose a surjection g : N→ I. Then define h : N×N→

⋃
i∈I Ai

by h(a, b) = fg(a)(b). That is, given an ordered pair (a, b), choose the element in Ag(a) that
is the image of fg(a)(b). The function h is surjective, because every element x in the union
is an element of Ai for some i ∈ I, so if b ∈ N is such that fi(b) = x and a ∈ N is such that
g(a) = i, then h(a, b) = x. We conclude that

⋃
i∈I Ai is countable in the same manner as in

Example 2.3.

Proposition 2.3. Let A1, . . . , An be finitely many countable sets. Then the product
∏n

i=1Ai

is countable (a finite product of countable sets is countable).

Proof. By the same inductive argument as in Corollary 1.4, it suffices to prove the proposition
in the case n = 2. If either A1 or A2 is empty, then so is the product, so the proposition
is trivially true. So suppose A1 and A2 are nonempty. Pick surjections f : N → A1 and
g : N→ A2. Then h : N×N→ A1 ×A2, h(a, b) = (f(a), g(b)) is surjective, so we conclude
that A1 × A2 is countable in the same manner as in Example 2.3.

Again, note how similar this is to the proof that Q is countable!

Now, we have given many examples of countable sets. We have N, Z, Q, Z×Z, Q×Q,
any subset thereof, etc. On the other hand, we have not given an example of any uncountable
set. We will do that now:

Theorem 2.1. The set R of real numbers is uncountable.

One proof uses a famous argument known as Cantor’s diagonal argument, which you will
replicate on HW2. On the other hand, the proof uses properties of the decimal expansions of
real numbers, which are actually not elementary to develop from the basic axioms of R. So
we will be taking a lot of background on faith here, which means our proof is not developed
from “first principles.” There are “better” proofs of this theorem without using the decimal
expansion of real numbers, but as for guiding intuition, Cantor’s proof is still the best.

Proof. We will assume without proof that every real number has a unique decimal expan-
sion, with the caveat that we never allow decimal expansions ending in an infinite string of
consecutive 9’s (as 0.999 . . . = 1.00 . . .). Such a decimal expansion can be made infinite by
padding a string of trailing zeros, if necessary.

We actually prove that the subset [0, 1) is uncountable. Suppose for contradiction that
it were. Then there is a surjection f : N → [0, 1). Given n ∈ N, let an be the nth digit
(after the decimal point) of the unique decimal expansion of f(n). Let bn be an integer in
[0, 9] that does not equal an or 9. Then consider the real number r with decimal expansion

0.b1b2b3b4 . . . ,
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which by construction of the bn’s, does not end in an infinite string of consecutive 9’s. This
is some real number in [0, 1), but r 6= f(n) for any n. Indeed, by construction, the decimal
expansion of r differs from the decimal expansion of f(n) in the nth digit, and because such
a decimal expansion is unique, we have r 6= f(n). But this contradicts the surjectivity of f ,
because we constructed r not in the image of f .

To complete the proof, we use the fact that [0, 1) is uncountable to show that R is
uncountable.

Lemma 2.2. If B is a subset of a set A and B is uncountable, then A is uncountable.

Similarly to before, the intuition is that uncountable sets are “large”, so a superset of a
large set is still large.

Proof. Suppose for contradiction that A is countable. Then there is an injection f : A→ N.
But there is an injection g : B → A given by inclusion of B into A (i.e. g(b) = b, where the
first b is considered as an element of B, and the second as an element of A), so g ◦f : B → N
is an injection. This contradicts the assumption that B is uncountable.

Now apply this lemma to the subset [0, 1) ⊆ R.

Let’s demonstrate how the diagonal element works intuitively and see where its name
comes from. Suppose for contradiction that [0, 1) was countable. Then we can order its
elements according to some surjection f : N→ A:

f(1) = 0.256283057 . . .

f(2) = 0.179456238 . . .

f(3) = 0.650486171 . . .

f(4) = 0.210608969 . . .

f(5) = 0.111171823 . . .

Then if we construct a decimal in [0, 1) whose nth digit after the decimal point always differs
from the bolded nth digit of f(n), such as r = 0.32123 . . ., then r can never be written down
in the list of f(n)’s, so our “counting/ordering procedure” never gets to r.

Corollary 2.3. The set of complex numbers C is uncountable.

Proof. C contains R as a subset, so apply Lemma 2.2 and Theorem 2.1.

Corollary 2.4. The set R−Q of irrational numbers is uncountable.

Proof. Otherwise R = Q ∪ (R−Q) would be countable by Proposition 2.2.

The diagonal argument can produce more examples of uncountable sets. As examples:
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Example 2.4. In Proposition 2.3, we showed that a finite product of countable sets is
countable. On the other hand, an infinite product of countable sets is usually not countable,
even if all the sets in question are finite (but have cardinality greater than 1). As an example,
if X is the two-element set {0, 1}, then the infinite product

∞∏
n=1

{0.1} = {0, 1} × {0, 1} × {0, 1} × . . .

is uncountable. The proof is left as an exercise (mimic the diagonal argument again).

Example 2.5. Suppose S is a countably infinite set (e.g. S = Z). Then P(S), the power
set of S, is uncountable. It suffices to prove that there is no surjection S → P(S). Indeed,
if P(S) were then countable, with a bijection f : P(S) → N, then given some bijection
g : S → N, f−1 ◦ g would be a bijection S → P(S), a contradiction.

The proof that there is no surjection S → P(S) is on HW2—it uses yet another variant
of Cantor’s diagonal argument.

3 Comparing Cardinalities

So far, we have split sets into three different types: the finite sets, the countably infinite
sets, and the uncountably infinite sets. Our intuition tells us that the finite sets are the
“smallest”, followed by the countably infinite sets, and then the uncountably infinite sets
are the “largest.” We now make this precise by extending the idea of cardinality to infinite
sets.

Definition 3.1. Let A and B be sets, possibly infinite. We say that the cardinality of A
is less than or equal to the cardinality of B, written |A| ≤ |B|, if there exists an injection
from A to B. In this case, we can also write |B| ≥ |A| (this notation will be justified in
Proposition 3.1).

We say that the cardinality of A equals the cardinality of B, written |A| = |B|, if there is
a bijection from A to B. It may be the case that the cardinality of A is less than or equal
to that of B, but not equal to the cardinality of B, in which case we write |A| < |B|.

There are many things to say about the above definition. First, we note that when A
and B are finite, the definition agrees with our results from Section 1. In particular, if A
and B are nonempty finite sets, with A having cardinality m and B having cardinality n,
then m ≤ n if and only if |A| ≤ |B| in the sense of the above Definition 3.1: if m ≤ n, then
if we compose bijections A → [m] and [n] → B with an injection [m] → [n] in the right
order, then we get an injection A → B. Conversely, suppose m > n. Then supposing for
contradiction that there is an injection A → B, then there is an injection f : [m] → [n].
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Then f restricts to a bijection [m]→ Im(f), and by Proposition 1.2, then there is a bijection
Im(f)→ [n] if Im(f) = [n] (in which case f is bijective), or a bijection Im(f)→ [k] for some
1 ≤ k < n. In either case, there is a bijection of Im(f) with a set [k] for some k ≤ n < m,
hence a bijection of [m] with its proper subset [k]. This contradicts, say, Corollary 1.1, so
we must have m ≤ n.

More importantly, we have not defined what |A| is for infinite sets A. An initial idea
is to just use the special symbol ∞, but we have already seen that we have to distinguish
countably infinite and uncountable sets: they do not have the same cardinality. So if A is
countably infinite but B is uncountably, we cannot represent |A| and |B| by the same symbol
∞.

It turns out that there is a system of “arithmetic,” called cardinal arithmetic, that allows
us to differentiate and manipulate (e.g. add/multiply) these different “sizes of infinity” in
a rigorous way. For example, the cardinal number ℵ0 is defined to be the cardinality of a
countable set. One can define a “next-smallest cardinal,” ℵ1, which we would like to say
is the cardinality of R; that is, that R is the “smallest non-countably infinite set.” This
statement is the famous continuum hypothesis of set theory, which is in fact unprovable(!!!)
under the usual ZFC axioms of set theory. Showing that the continuum hypothesis was
unprovable won Paul Cohen a Fields Medal in 1966.

We do not discuss cardinal arithmetic any further; those interested should take an ad-
vanced course on set theory. We will only prove some basic results on comparing cardinalities.

Example 3.1. If B is a subset of A, then |B| ≤ |A|.

Example 3.2. All countably infinite sets have the same cardinality, as they are all in bijec-
tion with each other (via a bijection with N).

Example 3.3. We have |Q| < |R| as there is an obvious injection Q→ R, and we have the
strict inequality because R is not countable.

Example 3.4. If A, B, and C are sets with |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|. Hence
the “cardinality comparison operator” ≤ is transitive.

Proposition 3.1. Suppose there is a surjection from B to A. Then |A| ≤ |B|.

Proof. On HW2, it is proved that the existence of a surjection g : B → A implies the
existence of an injection A→ B.

This solidifies the following intuition: the existence of an injection A → B means that
A is “smaller than B”, and conversely the existence of a surjection A→ B means that A is
“larger than B”.

Let us now make precise our intuition that the countably infinite sets are the “smallest
infinite sets.”
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Proposition 3.2. Let A be an infinite set. Then there exists a countably infinite subset B
of A. In particular, |N| = |B| ≤ |A|.

Proof. The proof requires a “recursive definition” of a function. Since we do not want to
bother ourselves with all the tedious details of making this precise, we will sweep them under
the rug, and content ourselves with a plausible but not-entirely-rigorous proof. In the course
of the proof, I also need to invoke the axiom of choice, but this will also be swept under the
rug without comment (unfortunately, the axiom of choice cannot be avoided: see here).

Since A is infinite, it is not empty by definition. So pick some a1 ∈ A. We define
a function f : N → A, first by setting f(1) = a1. Next, consider the subset A − {a1}
of A. This must be nonempty, because otherwise there is a surjection [1] → A given by
1 7→ a1, contradicting the infinite-ness of A (recall Proposition 1.3). Therefore there is some
a2 ∈ A− {a1}. Set f(2) = a2.

We continue in this fashion. Given n ≥ 3, suppose we have picked a1, . . . , an−1 such that
for any 1 ≤ k ≤ n−1, ak was picked to be in the nonempty set A−{a1, a2, . . . , ak−1}, and we
have set f(k) = ak. Then A− {a1, . . . , an−1} is nonempty, as otherwise there is a surjection
[n − 1] → A given by m 7→ am. So pick some an ∈ A − {a1, . . . , an−1}, and set f(n) = an.
This “inductively/recursively” defines f(n) for all n ∈ N.

We claim that f is injective. Suppose m and n are distinct positive integers, so WLOG
m < n and m ≤ n − 1. Then by construction, an = f(n) is in A − {a1, . . . , an−1}. In
particular, since am ∈ {a1, . . . , an−1}, we have an 6= am = f(m), so f is an injection N→ A.
Since f induces a bijection from N to Im(f) ⊆ A, we have produced the desired countably
infinite subset Im(f) of A.

Example 3.5. As another example, let S be any set, and P(S) its power set. Then because
we know from Example 2.5 that there is no bijection S → P(S), we have |S| 6= |P(S)|. But
you will prove on HW2 that |S| ≤ P(S), so we in fact have |S| < P(S).

We end by stating two facts which seem intuitively obvious, but actually tricky to prove.
First, from our intuition with inequalities of real numbers, we know that given two real
numbers x and y, then either x ≤ y or y ≤ x. On the other hand, it is not so clear that given
two sets A and B, then either |A| ≤ |B| or |B| ≤ |A| (this would upgrade the “cardinality
comparison operator” ≤ from a partial order to a total order, a concept that we will discuss
later in the class). Proving this would require the construction of an injection from A to B,
or one from B to A, and it is not obvious that one in either direction exists, especially when
A and B are both uncountably infinite. Fortunately, the statement is true:

Proposition 3.3. If A and B are sets, then either |A| ≤ |B| or |B| ≤ |A|.

The proof requires a variant of the axiom of choice known as Zorn’s Lemma (which is
very useful in algebraic applications, as you might learn in a future math course).

https://mathoverflow.net/questions/51415/is-it-possible-to-show-that-an-infinite-set-has-a-countable-infinite-subset-w
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Finally, we also know that if x and y are real numbers, and if we have both x ≤ y
and y ≤ x, then x = y. Again, this is not so clear with cardinalities. Even if we assume
that |A| ≤ |B| and |B| ≤ |A|, or in other words, that we have injections f : A → B and
g : B → A, it is not clear how to build a bijection h : A → B to conclude that |A| = |B|.
Certainly our injections need not be inverse bijections, or even bijections at all: consider
the case when A = B = Z, f(x) = 2x, and g(x) = 3x. Fortunately, there is the amazing
theorem:

Theorem 3.1 (Schroeder-Bernstein). If A and B are sets with |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|.

The proof is outlined in Exercise 2.5.41 of our textbook.
As a sample application, we prove that R2 = R × R has the same cardinality as R

(something we were not able to do before).

Proposition 3.4. We have |R2| = |R|.

Proof. By Theorem 3.1, it suffices to find injections R2 → R and R → R2. The latter is
easy: take f : R→ R2, f(r) = (r, 0). For the former, we first note that the function

g : (0, 1)→ R, g(x) =
2x− 1

2x(1− x)

is a bijection (exercise: check this).1 Therefore there is a bijection from (0, 1)2 to R2,
which means that we can construct an injection R2 → R by constructing an injection
(0, 1)2 → (0, 1), and then composing various bijections with this injection.

We repeat the setup and assumptions of Theorem 2.1, where every real number in (0, 1)
has a unique decimal expansion that does not end in an infinite string of consecutive 9’s.
Then we define a function h : (0, 1)2 → (0, 1) as follows:

h(0.a1a2a3 . . . , 0.b1b2b3 . . .) = 0.a1b1a2b2a3b3 . . . .

Because neither 0.a1a2a3 . . . nor 0.b1b2b3 . . . end in an infinite string of consecutive 9’s,
0.a1b1a2b2a3b3 . . . does not either. Using the uniqueness of the decimal expansion, one can
check that h is injective (exercise: check this too). So h induces an injection R2 → R, and
we have proved that |R2| = |R| via application of the Schroeder-Bernstein theorem.

1One can also show that there is a bijection betwen (0, 1) and R via the Schroeder-Bernstein theorem,
but this is surely overkill.
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